

Jivago – The highly-reflective object-oriented Python framework

Jivago is an object-oriented, highly-reflective Python framework for building web applications. It relies heavily on type annotations and decorators to enforce typing, providing package auto-discovery and dependency injection out of the box. This leads to less boilerplate code, while maintaining loose-coupling across components.

Documentation

	Installation
	Virtualenv

	Quickstart
	Component Auto-discovery

	The Resource Class

	Serialization

	Dependency Injection

	View Rendering

	Reflection
	Declaring Custom Annotations

	Runnable Components
	Background Workers

	Application Initialization Hooks

	Scheduled Tasks

	Serialization

	Manual Route Registration
	Serving static files

	Defining path prefixes

	Application Configuration
	Configuration methods

	ApplicationProperties and SystemEnvironmentProperties

	Deploying Jivago Applications
	Running in Production

Installation

Jivago and its dependencies can be installed from PyPi. Python3.6 or greater is required.

pip install jivago

Virtualenv

Using a virtual environment is recommended for developing and deploying applications.

virtualenv -p python3.6 venv
source venv/bin/activate
pip install jivago
pip freeze > requirements.txt

Quickstart

A minimal Jivago application is shown below :

from jivago.jivago_application import JivagoApplication
from jivago.wsgi.annotations import Resource
from jivago.wsgi.methods import GET

@Resource("/")
class HelloResource(object):

 @GET
 def get_hello(self) -> str:
 return "Hello World!"

app = JivagoApplication()

if __name__ == '__main__':
 app.run_dev()

Notice that the example is made up of three separate parts:

	A Resource class, which defines a route for our application;

	The JivagoApplication object, which contains the application itself;

	A __main__ function which runs our application in a debug environment, listening on port 4000.

Now, pointing a web browser to http://localhost:4000 should print our Hello World! message.

Component Auto-discovery

While defining our resource classes in our main file is definitely possible, it can become quite unwieldy. In fact, one of the key goals of the Jivago framework is to maintain loose-coupling of our components.

We will therefore move our resource classes into their own files, and use Jivago’s built-in package discovery mechanism to automatically register our routes.

hello_resource.py

from jivago.wsgi.annotations import Resource
from jivago.wsgi.methods import GET

@Resource("/")
class HelloResource(object):

 @GET
 def get_hello(self) -> str:
 return "Hello World!"

application.py

import my_hello_world_application
from jivago.jivago_application import JivagoApplication

app = JivagoApplication(my_hello_world_application)

if __name__ == '__main__':
 from werkzeug.serving import run_simple

 run_simple('localhost', 4000, app)

my_hello_world_application
 ├── __init__.py
 └── resources
 ├── __init__.py
 └── hello_resource.py
application.py

Note that, when creating the JivagoApplication object, a reference to the application’s root package is passed as the first argument. The root package should contain all Jivago-annotated classes. (i.e. @Resource, @Component, etc.)

The app object should be outside of the explored package.

Warning : Since all python files are imported at run-time, any lines of code outside a class or a function will be executed before the application is started. It is therefore highly advised to avoid having any line of code outside a declarative block.

The Resource Class

The resource class is the fundamental way of declaring API routes. To define a route, simply declare the path inside the @Resource decorator on the class. Sub-paths can be defined on any of the class’ methods using the @Path decorator. Allowed HTTP methods have to be explicitly defined for each routing function. Use @GET, @POST, @PUT, @DELETE, etc.

Unlike other Python web framework, method invocation relies heavily on type annotations, which resemble the static typing present in other languages like C++ and Java. Given missing parameters, a method will not be invoked and simply be rejected at the framework level. For instance, declaring a route receiving a dict as a parameter matches a JSON-encoded request body. Request and Response objects can be requested/returned, when having direct control over low-level HTTP elements is required.

When resolving string and numeric parameters, path parameters and query parameters are tried. In that case, the key should match the parameter variable name.

A complex resource example

from jivago.wsgi.annotations import Resource, Path
from jivago.wsgi.methods import GET, POST

@Resource("/hello")
class HelloWorldResource(object):

 @GET
 def get_hello(self) -> str:
 return "Hello"

 @POST
 @Path("/{name}")
 def post_hello(self, name: str) -> str:
 return "name: {}".format(name)

 @Path("/request/json")
 @POST
 def read_request_body_from_dict(self, body: dict) -> dict:
 return {"the body": body}

 @GET
 @Path("/query")
 def with_query(self, name: str) -> str:
 return "Hello {}!".format(name)

While return type annotations are not strictly required, they are nonetheless recommended to increase readability and enforce stylistic consistency.

For manual route registration, see Manual Route Registration.

Serialization

Jivago supports the definition of DTO classes, which can be directly serialized/deserialized. These classes explicitly define a JSON schema and attribute typing, negating the need to use an external schema validator. To define a DTO, use the @Serializable decorator :

from jivago.lang.annotations import Serializable

@Serializable
class MyDto(object):
 name: str
 age: int

If a constructor is declared, it is used when deserializing. Otherwise, each attribute is set using __setattr__.

See Serialization for more details.

Dependency Injection

To allow for modularity and loose-coupling, dependency injection is built into the framework. Resource classes can therefore request dependencies from their constructor.

from jivago.lang.annotations import Inject
from jivago.lang.registry import Component
from jivago.wsgi.annotations import Resource

@Component
class CalculatorClass(object):

 def do_calculation(self) -> int:
 return 4

@Resource("/calculation")
class CalculatedResource(object):

 @Inject
 def __init__(self, calculator: CalculatorClass):
 self.calculator = calculator

@Component is a general-purpose annotation which registers a class to the internal service locator. Whenever a class requires dependencies from their constructor, those get recursively instantiated and injected. Note that the @Inject annotation is required.

See Dependency Injection for advanced configurations.

View Rendering

Jivago also supports rendered HTML views, using the Jinja2 templating engine.

templated_resource.py

from jivago.templating.rendered_view import RenderedView
from jivago.wsgi.annotations import Resource
from jivago.wsgi.methods import GET

@Resource("/template")
class TemplatedResource(object):

 @GET
 def get(self) -> RenderedView:
 return RenderedView("my-template.html", {"name": "john"})

my-template.html

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Title</title>
</head>
<body>
<h1>Hello {{ name }}</h1>
<form method="post">
 <input name="name" />
 <input type="submit">
</form>
</body>
</html>

By default, the framework looks for a views package directly underneath the root package.

my_hello_world_application
 ├── __init__.py
 ├── application.py
 └── views
 ├── __init__.py
 └── my-template.html

Reflection

Jivago provides its own reflection-style registration mechanism. We will define as annotations decorators which do not alter the decorated functions or classes but add a means of programmatically inspecting said decorated functions or classes.

Accessing annotated elements is done by interrogating the Registry object. Two types of annotations are defined in Jivago :

	Annotation: A general-purpose registering decorator.

	ParametrizedAnnotation: Allows the passing of arguments when the annotation is used.

The Registry object contains references to all annotated elements, and provides a get_annotated_in_package method, which returns all registrations for a specific annotation, for which the package name starts with the given string. Below is an example where all classes with the @Component annotation in any package are requested.

from jivago.lang.registry import Registry, Component

registry = Registry.INSTANCE

registrations = registry.get_annotated_in_package(Component, "")

for registration in registrations:
 registered_class = registration.registered # Registered class or function
 annotation_parameters = registration.arguments # empty dictionary for standard annotations

Declaring Custom Annotations

Standard annotations can be defined using either the python-esque decorator-style syntax by adding the @Annotation decorator to a simple pass-through decorator, or the simpler object-style syntax by invoking the Annotation constructor.

from jivago.lang.registry import Annotation

Decorator-style syntax
@Annotation
def MyAnnotation(x: type) -> type:
 return x

Object-style syntax
MyAnnotation2 = Annotation()

@MyAnnotation
@MyAnnotation2
class MyAnnotatedClass(object):
 pass

Parametrized annotations can only defined using the decorator-style syntax. To create a new parametrized annotation, use the @ParametrizedAnnotation decorator on a function which returns a pass-through function. (See the example below.)

Unnamed argument will be saved in the dictionary with the declared parameter name as the key.

from jivago.lang.registry import ParametrizedAnnotation

@ParametrizedAnnotation
def MyAnnotation(param1: str, param2: str):
 return lambda x: x

@MyAnnotation(param1="foo", param2="baz")
class MyAnnotatedClass(object):
 pass

Runnable Components

Jivago provides a mechanism for running background tasks and exposes application initialization hooks. For both of those purposes, the Runnable interface is used.

from jivago.lang.annotations import Override
from jivago.lang.runnable import Runnable

class MyRunnableComponent(Runnable):

 @Override
 def run(self):
 print("hello!")

Background Workers

For running continuous tasks on a background thread, use the @BackgroundWorker annotation. These components will be started on separate threads when the app has started successfully. Components instantiated in this manner support all of the usual dependency injection features.

import time

from jivago.lang.annotations import Override, BackgroundWorker, Inject
from jivago.lang.runnable import Runnable

@BackgroundWorker
class MyBackgroundWorker(Runnable):

 @Inject
 def __init__(self, component: MyComponent):
 self.component = component

 @Override
 def run(self):
 while True:
 print("hello from the background")
 time.sleep(5)

Application Initialization Hooks

@PreInit, @Init and @PostInit hooks are provided for running one-off tasks at startup and are invoked identically to background workers. These are, however, required to exit before the application can start.

from jivago.config.startup_hooks import PreInit, Init, PostInit
from jivago.lang.annotations import Override
from jivago.lang.runnable import Runnable

@PreInit
class FirstHook(Runnable):

 @Override
 def run(self):
 print("First!")

@Init
class SecondHook(Runnable):

 @Override
 def run(self):
 print("Second!")

@PostInit
class ThirdHook(Runnable):

 @Override
 def run(self):
 print("Third!")

	PreInit is invoked right after the service locator and application properties are configured.

	Init is invoked after initializing the routing table. At this stage, the application is in a coherent state.

	PostInit is invoked after starting background workers and scheduled tasks. No further initialization task is left to be done.

Scheduled Tasks

One-off background tasks can be scheduled over a longer period of time using scheduled tasks. The @Scheduled annotation takes either a “cron” or “every” parameter.

	cron : Takes a cron-style string.

	every: Takes a Duration enum. (Duration.SECOND, Duration.MINUTE, Duration.HOUR, Duration.DAY)

	start : Optional. Specifies a start time before which the task will not be run.

from jivago.lang.annotations import Override
from jivago.lang.runnable import Runnable
from jivago.scheduling.annotations import Scheduled, Duration

@Scheduled(every=Duration.HOUR)
class ScheduledTask(Runnable):

 @Override
 def run(self):
 print("hello")

Serialization

Jivago provides an ObjectMapper object which can be used to serialize and deserialize complex objects. Mapped classes do not need to be annotated with the @Serializable annotation.

object_mapper.py

from jivago.serialization.object_mapper import ObjectMapper

class Dto(object):
 name: str

object_mapper = ObjectMapper()

dto: Dto = object_mapper.deserialize('{"name": "paul" }', Dto)

json_str = object_mapper.serialize(dto)

If a constructor (__init__) function is declared on the mapped class, parameters are injected, otherwise parameters are set using the __setattr__ method.

Manual Route Registration

Additionnal URL routes can be registered by creating a new RoutingTable which references classes and their methods. Note that the appropriate classes should be imported beforehand. The referenced resource class can be either an instance, or the actual class. In that case, it will be instantiated by the ServiceLocator, and should therefore be registered manually in the configure_service_locator context method.

from jivago.wsgi.methods import GET, POST
from jivago.wsgi.routing.tree_routing_table import TreeRoutingTable

my_routing_table = TreeRoutingTable()

my_routing_table.register_route(GET, "/hello", MyResourceClass, MyResourceClass.get_hello)
my_routing_table.register_route(POST, "/hello", MyResourceClass, MyResourceClass.get_hello)

This new RoutingTable can then be used to configure the Router object, which is used to serve all requests. The recommended way of configuring your application is by inheriting from the ProductionJivagoContext class, and then overriding the create_router method.

from jivago.config.production_jivago_context import ProductionJivagoContext
from jivago.jivago_application import JivagoApplication
from jivago.lang.annotations import Override
from jivago.lang.registry import Registry
from jivago.wsgi.routing.router import Router

class MyApplicationContext(ProductionJivagoContext):

 @Override
 def create_router(self) -> Router:
 router = super().create_router()
 router.add_routing_table(my_routing_table)
 return router

app = JivagoApplication(my_package,context=MyApplicationContext)

Serving static files

While it is not generally recommended to serve static files from a WSGI application for performance reasons, Jivago supports static file serving. The StaticFileRoutingTable dynamically defines routes for serving files.

from jivago.config.production_jivago_context import ProductionJivagoContext
from jivago.lang.annotations import Override
from jivago.wsgi.routing.router import Router
from jivago.wsgi.routing.serving.static_file_routing_table import StaticFileRoutingTable

class MyApplicationContext(ProductionJivagoContext):

 @Override
 def create_router(self) -> Router:
 router = super().create_router()
 router.add_routing_table(StaticFileRoutingTable("/var/www"))
 router.add_routing_table(StaticFileRoutingTable("/var/www", allowed_extensions=['.html', '.xml']))

 return router

The StaticFileRoutingTable can also be used with a allowed_extensions parameter to explicitly allow or disallow specific file types.

Defining path prefixes

When registering a new routing table, using the path_prefix parameter maps the new routing table to part of the path hierarchy. For instance, static files can be served from /static/my_file.html.

from jivago.config.production_jivago_context import ProductionJivagoContext
from jivago.lang.annotations import Override
from jivago.wsgi.routing.router import Router
from jivago.wsgi.routing.serving.static_file_routing_table import StaticFileRoutingTable

class MyApplicationContext(ProductionJivagoContext):

 @Override
 def create_router(self) -> Router:
 router = super().create_router()

 router.add_routing_table(StaticFileRoutingTable("/var/www"), "/static")

 return router

Application Configuration

Configuration is done using a context class, which defines various methods which can be overridden. The recommended way of defining an application context is by inheriting from either ProductionJivagoContext or DebugJivagoContext, and overriding specific methods.

from typing import List, Type

from jivago.config.production_jivago_context import ProductionJivagoContext
from jivago.jivago_application import JivagoApplication
from jivago.wsgi.filter.filter import Filter
from jivago.wsgi.routing.router import Router

class MyApplicationContext(ProductionJivagoContext):

 def configure_service_locator(self):
 super().configure_service_locator()

 def scopes(self) -> List[type]:
 return super().scopes()

 def get_filters(self, path: str) -> List[Type[Filter]]:
 return super().get_filters(path)

 def get_views_folder_path(self) -> str:
 return super().get_views_folder_path()

 def get_config_file_locations(self) -> List[str]:
 return super().get_config_file_locations()

 def create_router(self) -> Router:
 return super().create_router()

 def get_banner(self) -> List[str]:
 return super().get_banner()

app = JivagoApplication(my_package, context=MyApplicationContext)

Configuration methods

	configure_service_locator()

	This method can be used to manually bind classes to the internal ServiceLocator. See Dependency Injection for more details.

	scopes()

	This method defines component scopes for the ServiceLocator which determine when to instantiate new components. By default, only the Singleton exists.

	get_filters()

	This method returns a list of Filters which should be applied to a specific request. It is called once for every request.

	get_views_folder_path()

	This method defines the folder in which template files are stored for RenderedView responses. Defaults to the views submodule of the root package.

	get_config_file_locations()

	Defines a list of files which should be tried when importing the application properties. The ApplicationProperties is creating using the first existent file in this rule. Defaults to ["application.yml", "application.json", "properties.yml", "properties.json"].

	create_router()

	This method is used to configure the Router object which is used to resolve requests.

	get_banner()

	Defines the ASCII-art banner which is printed in the console at every startup.

ApplicationProperties and SystemEnvironmentProperties

Both the ApplicationProperties and SystemEnvironmentProperties dictionaries can be injected into a component class, thus providing access namely to the contents of the application config file, and to the environment variables. For instance, for an application.yml file placed in the working directory, an appropriate ApplicationProperties object is created.

application.yml

my_property: "foobar"

my_component.py

from jivago.config.properties.application_properties import ApplicationProperties
from jivago.lang.annotations import Inject
from jivago.lang.registry import Component

@Component
class MyComponent(object):

 @Inject
 def __init__(self, application_properties: ApplicationProperties):
 self.application_properties = application_properties

 def do_something(self):
 print(self.application_properties["my_property"])

Deploying Jivago Applications

Jivago implements the WSGI interface for web applications. Therefore, a WSGI server is required for serving requests. While developing, Werkzeug is the recommended WSGI server, as it is easily started and provides convenient debug features.

from jivago.jivago_application import JivagoApplication

app = JivagoApplication()

if __name__ == '__main__':
 # using the bundled werkzeug server
 app.run_dev(port=4000, host="localhost")

 # or alternatively
 from werkzeug.serving import run_simple

 run_simple('localhost', 4000, app)

Running in Production

For production purposes, other WSGI servers are available, such as gunicorn and uwsgi.
See here [https://github.com/keotl/jivago-heroku-example] for a complete deployment example for heroku.

Index

Dependency Injection

Jivago provides a powerful dependency injection engine as a means of implementing inversion of control.

Basic Usage

Classes annotated with @Component or @Resource are automatically registered in the built-in service locator. Dependencies are constructor-injected, and require proper typing hints to be used.

from jivago.lang.annotations import Inject
from jivago.lang.registry import Component
from jivago.wsgi.annotations import Resource

@Component
class CalculatorClass(object):

 def do_calculation(self) -> int:
 return 4

@Resource("/calculation")
class CalculatedResource(object):

 @Inject
 def __init__(self, calculator: CalculatorClass):
 self.calculator = calculator

Always make sure that the type hint corresponds exactly to the requested object. (i.e. The type annotation could be used directly as a constructor.) An identically-named, but otherwise different class will not work.

Collections

Using a collection type hint, all children of a class can be requested. Take a look at the following example :

import random
from typing import List

from jivago.lang.annotations import Override, Inject
from jivago.lang.registry import Component

class Calculator(object):

 def do_calculation(self, input: int) -> int:
 raise NotImplementedError

@Component
class ConstantCalculator(Calculator):

 @Override
 def do_calculation(self, input: int) -> int:
 return 5

class RandomCalculator(Calculator):

 @Override
 def do_calculation(self, input: int) -> int:
 return random.randint(0, 100)

@Component
class CalculationService(object):

 @Inject
 def __init__(self, calculators: List[Calculator]):
 self.calculators = calculators

 def calculate(self, input: int) -> List[int]:
 return [calculator.do_calculation(input) for calculator in self.calculators]

The CalculationService class is injected with a list of all components which implement the Calculator interface.

Scopes

By default, all components are re-created when a request is received. However, a @Singleton annotation is provided for when unicity is important. (e.g. When making a simple persistence mechanism held in memory.)

from typing import List

from jivago.lang.registry import Component, Singleton

@Component
@Singleton
class InMemoryMessageRepository(object):

 def __init__(self):
 self.content = []

 def save(self, message: str):
 self.content.append(message)

 def get_messages(self) -> List[str]:
 return self.content

A singleton component will be instantiated when it is first requested, and be reused for subsequent calls.

Factory Functions

When complex scoping is required for a given component, for example when handling a database connection, factory functions can be used to instantiate and cache components using the @Provider annotation. In this case, the return type hint defines the class to which the function is registered.

from jivago.lang.registry import Provider

class DatabaseConnection(object):

 def __init__(self):
 # open a connection, etc.
 pass

 def query_database(self) -> int:
 # use the opened connection, etc.
 return 5

connection = None

@Provider
def get_database_connection() -> DatabaseConnection:
 global connection
 if connection is None:
 connection = DatabaseConnection()
 return connection

The provider function can take any registered component as arguments.

Manual Component Registration

When fine-tuned control is necessary, the service locator should be manually configured by extending the Context object. In order to do so, first override either ProductionJivagoContext or DebugJivagoContext. This will be your new application context, which should be passed to the JivagoApplication object. The configure_service_locator is where component registration is done. Use the self.serviceLocator.bind method to manually register components. Note that Jivago decorators will not be taken in consideration when using manual component registration.

from jivago.config.production_jivago_context import ProductionJivagoContext
from jivago.lang.annotations import Override

class MyApplicationContext(ProductionJivagoContext):

 @Override
 def configure_service_locator(self):
 super().configure_service_locator()
 self.serviceLocator.bind(MessageRepository, InMemoryMessageRepository)

The bind(interface, implementation) methods registers an implementation to its interface. The service locator acts as a dictionary, where the interface is the key, and the implementation is the value. The interface should always be a class.

	The implementation can be any of the following :

	
	A class

	An instance of a class

	A function which, when called, returns an instance of a class

When a class is given, the default behaviour is applied : a new instance is created whenever the interface is requested. Registering an instance of the class causes it to act as a singleton. Finally, a registered function will be invoked whenever the interface class is requested.

Service Locator Object

Similarily, components can be manually requested by directly invoking the ServiceLocator object. A reference to the ServiceLocator object can be obtained either through dependency injection, or statically.

from jivago.config.abstract_context import AbstractContext
from jivago.inject.service_locator import ServiceLocator
from jivago.lang.annotations import Inject
from jivago.lang.registry import Component

@Component
class Calculator(object):
 def do_calculation(self) -> int:
 return 5

ServiceLocator injection
@Component
class CalculationService(object):

 @Inject
 def __init__(self, service_locator: ServiceLocator):
 self.service_locator = service_locator
 self.calculator = self.service_locator.get(Calculator)

Static access to the ServiceLocator object from anywhere
def calculate() -> int:
 service_locator = AbstractContext.INSTANCE.service_locator()
 calculator = service_locator.get(Calculator)
 return calculator.do_calculation()

The service locator has get and get_all methods for requesting components.

 _static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Jivago – The highly-reflective object-oriented Python framework

 		
 Installation

 		
 Virtualenv

 		
 Quickstart

 		
 Component Auto-discovery

 		
 The Resource Class

 		
 Serialization

 		
 Dependency Injection

 		
 View Rendering

 		
 Reflection

 		
 Declaring Custom Annotations

 		
 Runnable Components

 		
 Background Workers

 		
 Application Initialization Hooks

 		
 Scheduled Tasks

 		
 Serialization

 		
 Manual Route Registration

 		
 Serving static files

 		
 Defining path prefixes

 		
 Application Configuration

 		
 Configuration methods

 		
 ApplicationProperties and SystemEnvironmentProperties

 		
 Deploying Jivago Applications

 		
 Running in Production

_static/comment-bright.png

_static/ajax-loader.gif

